Národní úložiště šedé literatury Nalezeno 3 záznamů.  Hledání trvalo 0.01 vteřin. 
The nonstationary motion of solid body in a liquid
Stejskal, Jiří ; Hlavička, Rudolf (oponent) ; Čermák, Libor (vedoucí práce)
The subject of this thesis is the numerical simulation of the two-dimensional incompressible viscous flow. We consider a rotating ellipse concentric with a circle. The space between the ellipse and the circle is filled with a fluid. Our goal is to describe the fluid flow caused by the rotating ellipse, i.e., to determine the velocity field and pressure distribution. Further, we want to determine the additional effect of the fluid acting on the ellipse. These results are obtained as a solution of the Navier-Stokes equations by the finite element method. Special emphasis has been put on the derivation of the numerical scheme in a matrix form suitable for algorithmization. The Arbitrary Lagrangian-Eulerian (ALE) method has been used to incorporate the moving domain into the algorithm. A suitable stabilization technique of the finite element method is necessary to obtain relevant outcome. Presented results indicate sufficient robustness and accuracy of the numerical algorithm.
The nonstationary motion of solid body in a liquid
Stejskal, Jiří ; Hlavička, Rudolf (oponent) ; Čermák, Libor (vedoucí práce)
The subject of this thesis is the numerical simulation of the two-dimensional incompressible viscous flow. We consider a rotating ellipse concentric with a circle. The space between the ellipse and the circle is filled with a fluid. Our goal is to describe the fluid flow caused by the rotating ellipse, i.e., to determine the velocity field and pressure distribution. Further, we want to determine the additional effect of the fluid acting on the ellipse. These results are obtained as a solution of the Navier-Stokes equations by the finite element method. Special emphasis has been put on the derivation of the numerical scheme in a matrix form suitable for algorithmization. The Arbitrary Lagrangian-Eulerian (ALE) method has been used to incorporate the moving domain into the algorithm. A suitable stabilization technique of the finite element method is necessary to obtain relevant outcome. Presented results indicate sufficient robustness and accuracy of the numerical algorithm.
Numerical simulation of interaction of an elastic body and fluid flow
Kosík, A. ; Feistauer, M. ; Horáček, Jaromír ; Sváček, P.
The goal is to simulate airflow in human vocal folds their flow-induced movement. Two-dimensional viscous incompressible flow in time-dependent domain is described by the Navier-Stokes equations in the arbitrary Lagrangian-Eulerian formulation. The flow solved by FEM is coupled with the behaviour of the elastic body. Some results of numerical experiments are presented.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.